SUPPORTING INFORMATION FOR:

Naphthalene Based Calixarenes: Unusual Regiochemistry of a Friedel-Crafts Alkylation

Berkeley J. Shorthill and Timothy E. Glass*

Experimental Section

General. All reagents employed were commercially available. Anhydrous CH₂Cl₂ was obtained by distillation from CaH₂. Anhydrous diethyl ether was obtained by distillation from sodium benzophenone. All other solvents were purchased commercially and used without further purification. ¹H NMR spectra were obtained on either a Bruker AMX-360 spectrometer at 360 MHz or a Bruker DRX-400 at 400 MHz and were referenced to tetramethylsilane (TMS). ¹³C NMR spectra were obtained on either a Bruker AMX-360 at 90 MHz or a Bruker DRX-400 at 100 MHz and were referenced to CDCl₃ (77.0 ppm).

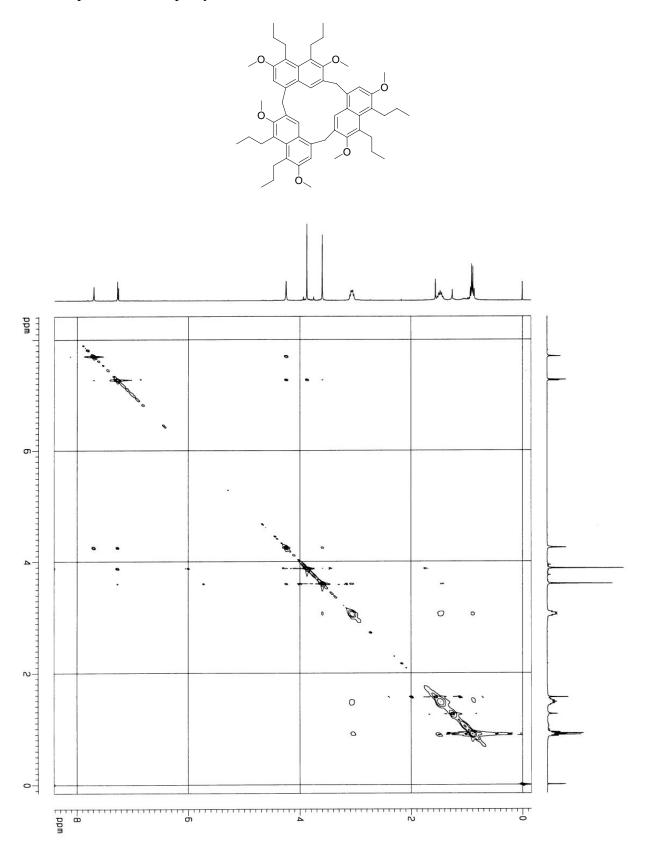
1,8-Diallyl-2,7-dimethoxynaphthalene (**11**). 2,7-Bisallyloxynaphthalene (**9**)¹ (8.00 g, 33.3 mmol) in *N,N*-diethylaniline (125 mL) was refluxed for 1 h under Ar. After cooling to room temperature, the solvent was removed in vacuo to yield 1,8-diallyl-2,7-dihydroxynaphthalene (**10**), which was methylated, without purification, by heating to 60 °C for 16 h with potassium carbonate (18.43 g, 133 mmol) and methyl iodide (8.30 mL, 133 mmol) in THF (135 mL). After cooling to room temperature, sodium hydride (1.33 g, 33.3 mmol) was added and the resulting mixture was stirred for two hours. The reaction was quenched with saturated ammonium chloride. The mixture was extracted with CH₂Cl₂, and the combined organic layers were dried over MgSO₄. Solvents were then removed in vacuo, and the residue was purified by chromatography (40:60 Hexanes/ CH₂Cl₂). Recrystallization from hexanes gave compound **11**

(4.80 g, 54% from compound **9**) as white crystals (mp 189.4-194.0 °C); ¹H NMR (CDCl₃): ∂ 7.70 (d, J = 8.8 Hz, 2H), 7.16 (d, J = 8.5 Hz, 2H), 6.20 (ddt, J = 17.3 Hz, 10.8 Hz, 4.9 Hz, 2H), 5.06 (dd, J = 9.8 Hz, 1.6 Hz, 2 H), 4.82 (dd, J = 17.3 Hz, 1.8 Hz, 2 H), 4.11 (s, 6H, OCH₃), 3.89 (m, 4H, ArCH₂). ¹³C NMR (CDCl₃): ∂ 157.2, 139.6, 135.5, 130.0, 126.8, 120.9, 115.0, 111.5, 57.2, 31.5. IR (neat, cm⁻¹): 3076 (w), 2998 (m), 2936 (m), 2835 (m), 1614 (s), 1516 (s), 1461 (m), 1255 (s), 1132 (s), 1049 (s). HRMS for M⁺ calcd for C₁₈H₂₀O₂ 268.1463, found 268.1450.

2,7-Dimethoxy-1,8-dipropylnaphthalene (**12**). Five percent palladium on carbon (1.70 g) in ethyl acetate (120 mL) was purged with H₂ for 40 min. A solution of compound **11** (4.10 g, 16.0 mmol) in ethyl acetate (40 mL) was added via syringe and the mixture was stirred for 3.5 h under an atmosphere of H₂. (The reaction was followed by TLC using SiO₂ plates pre-treated with AgNO₃.) The mixture was then filtered through celite, washing with ethyl acetate. Solvents were removed in vacuo to yield compound **12**, which was recrystallized from hexanes to give colorless crystals (4.10 g, 94%) (mp 68.0-69.6 °C). ¹H NMR (CDCl₃): ∂ 7.61 (d, J = 9.1 Hz, 2H), 7.17 (d, J = 9.1 Hz, 2H), 3.91 (s, 6H, OCH₃), 3.06 (m, 4H, ArCH₂), 1.66 (m, 4H), 1.06 (t, J = 7.2 Hz, 6H). ¹³C NMR (CDCl₃): ∂ 156.2, 133.4, 128.8, 126.5, 124.7, 111.0, 56.7, 29.0, 24.6, 14.4. IR (neat, cm⁻¹): 2954 (s), 2870 (m), 2835 (w), 1614 (s). 1517 (s), 1464 (m), 1251, (s), 1131 (s), 1047 (m). HRMS for M+H⁺ calcd for C₁₈H₂₅O₂ 273.1855, found 273.1851.

3-Formyl-2,7-dimethoxy-1,8-dipropylnaphthalene (**13**). A mixture of compound **12** (2.00 g, 7.35 mmol) and TMEDA (2.77 mL, 18.4 mmol) in diethyl ether (75 mL) was cooled to 0 °C under Ar. A solution of n-BuLi (1.6 M in hexanes) (9.19 mL, 14.7 mmol) was added dropwise over 12 min. The solution was allowed to warm to room temperature and was then brought to

reflux for 13 h. The solution was cooled to 0 °C, and DMF (2.28 mL, 29.4 mmol) was added. The resulting mixture was stirred at 0 °C for 2 h and was quenched by slowly adding 10 mL of 4N HCl. After extraction with CH_2Cl_2 the combined organic layers were washed consecutively with 5% HCl and saturated NaHCO₃, and were dried over MgSO₄. Solvents were removed in vacuo, and the resulting crude product was purified by chromatography (50:50 Hexanes/CH₂Cl₂) to yield compound **13** (1.26 g, 57%) as a colorless oil. 1 H NMR (CDCl₃): ∂ 10.35 (s, 1H, ArCHO), 8.18 (s, 1H), 7.77 (d, J = 9.1 Hz, 1H), 7.22 (d, J = 9.1 Hz, 1H), 3.94 (s, 3H, OCH₃), 3.90 (s, 3H, OCH₃), 3.09 (m, 4H, ArCH2), 1.61 (m, 4H), 1.06 (t, J = 7.3 Hz, 3H), 1.04 (t, J = 7.5, 3H). 13 C NMR (CDCl₃): ∂ 190.3, 158.2, 156.9, 136.5, 132.5, 131.5, 130.9, 127.0, 125.5, 125.2, 112.2, 63.7, 56.2, 28.7, 28.2, 25.3, 24.3, 14.1. HRMS for M+H $^+$ calcd for $C_{19}H_{25}O_3$ 301.1804, found 301.1791.


3-Hydroxymethyl-2,7-dimethoxy-1,8-dipropylnaphthalene (**14**). A mixture of compound **13** (0.918 g, 3.06 mmol) and sodium borohydride (0.289 g, 7.65 mmol) in absolute ethanol (30 mL) was stirred at room temperature for 16 h under Ar. The reaction was quenched with 13 mL of 10% HCl and extracted with CH_2Cl_2 . The combined organic layers were washed consecutively with brine and 5% HCl and were dried over MgSO₄. Solvents were removed in vacuo, and the crude product was purified by chromatography, eluting with CH_2Cl_2 , to give carbinol **14** (0.850 g, 92%) as an oil. ¹H NMR (CDCl₃): ∂ 7.57 (s, 1H), 7.57 (d, J = 8.9 Hz, 1H), 7.14 (d, J = 9.0 Hz, 1H), 4.79 (s, 2H), 3.79 (s, 3H, OCH₃), 3.72 (s, 3H, OCH₃), 3.09 (m, 4H), 2.72 (s, 1H, OH), 1.55 (m, 4H), 1.01 (t, J = 7.4 Hz, 6H). ¹³C NMR (CDCl₃): ∂ 155.8, 155.5, 132.7, 130.4, 128.7, 128.1, 127.8, 125.3, 112.1, 61.8, 61.7, 56.6, 29.0, 28.2, 25.4, 24.6, 14.2. IR (neat, cm⁻¹): 3600-

3150 (m), 2955 (s), 2870 (m), 2836 (m), 1606 (m), 1501 (s), 1465 (m), 1367 (m), 1249 (s), 1143 (s), 1025 (s). HRMS for M⁺ calcd for C₁₉H₂₆O₃ 302.1882, found 302.1869.

Naphthyl calix[3]arene (15). A solution of compound 14 (0.321 g, 1.06 mmol) in dichloromethane (6.5 mL) was cooled to 0 °C under Ar. Trifluoromethane sulfonic acid (0.0095 mL, 0.106 mmol) was added. The mixture was warmed to room temperature for 5 h. Solvent was removed in vacuo and the crude product was purified by chromatography (50:50 Hexanes/CH₂Cl₂) to give cyclic trimer 15 (0.069 g, 23%) as an oil. ¹H NMR (CDCl₃): ∂ 7.70 (s, 1H), 7.27 (s, 1H), 4.25 (s, 2H), 3.88 (s, 3H, OCH₃), 3.60 (s, 3H, OCH₃), 3.07 (m, 4H), 1.48 (m, 4H), 0.90 (m, 6H). ¹³C NMR (CDCl₃): ∂ 156.0, 155.3, 136.5, 133.0, 130.6, 130.4, 127.0, 126.1, 123.9, 114.7, 61.2, 56.9, 36.0, 29.6, 28.2, 25.2, 24.4, 14.1. IR (neat, cm⁻¹): 2954 (s), 1595 (s). HRMS for M+H⁺ calcd for C₅₇H₇₃O₆ 853.5407, found 853.5404.

⁽¹⁾ Prajer-Janczewska, L.; Wróblewski, J. Pol. J. Chem. 1980, 54, 1431-1437.

NOESY Spectrum for Naphthyl Calix[3]arene 15:

